
Supporting Text

Effects of Prior Distribution of R0

We examined the effects of the prior onR0 in three ways. First, we recalculated the posterior

distribution under three additional prior scenarios onR0: (i) a grave scenario, with the prior median

of R0 set to a relatively high value of 15.4; (ii ) an optimistic scenario, with the prior median ofR0

set to a relatively low value of 1.8; and (iii ) a pessimistic scenario with the prior median ofR0 set

to a moderately high value of 7 (Table 2). The median values of the optimistic and pessimistic prior

distributions reflect the low and high values ofR0 assumed in a previous model of smallpox (1).

An important observation is that the curvature of the prior tails is important for the length of the

posterior tails and, consequently, for the reported credible intervals (CIs). Although the posterior

point estimates and CIs consequently differ somewhat among the four sets of prior scenarios, the

comparison between the two intervention strategies nevertheless remains essentially unchanged.

Mass vaccination is always favored over trace vaccination regardless of the prior distribution onR0.

All other parameters’ prior distributions purposefully were made informative based on the available

literature, and, thus, we did not explore the sensitivity to those priors.

The changes in the posterior estimates ofR0 as the prior changed were roughly what one would

expect (Table 2 and Fig. 4). In particular, there was considerable overlap across estimates of the

posterior. For Old World populations, the median value of the estimate shifted only under the

pessimistic prior, which was a result of this prior being much narrower than the other priors under

consideration (Fig. 4C). For New World populations, the median values were similar except under

the optimistic prior (Fig. 4B), for which the median of the distribution was higher. The shift to

larger values under the optimistic prior occurred because the tail of the log-normal prior onR0 is

essentially flat in the region for which the likelihood is also flat. At higher values ofR0, it therefore

becomes increasingly difficult to differentiate between likely draws ofR0 under the Markov chain

Monte Carlo (MCMC) sampler, as in Fig. 1. The long tail on the posterior reflects this lack of
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information. In fact, strictly speaking, this prior is not truly optimistic, because it assigns substantial

probabilities to high values ofR0.

We also considered the effect of varying speeds of diagnosis on the optimal vaccination strategy.

Specifically, we considered the effect of allowing diagnosis to occur when macales appear versus

when pustules appear (seeVariability in the Parameters of the Vaccination Modelfor further infor-

mation about the stages of smallpox). This change had no effect on the percentage of draws from

the MCMC sampler that favored mass vaccination. Changes in the priors similarly had little effect

(Figs. 5-7). Finally, we compared our results to the results of Gani and Leach (2) by assuming, as

they did, that there is no uncertainty in any parameters exceptR0 andσ, by fixing the remaining

parameters at the same values that they used, and by using in our likelihood calculation the same

epidemic data sets that they used. Under these assumptions, the median value ofR0 that Gani and

Leach (2) report is very close to the median value of our posterior distribution. Additionally, the

range of Gani and Leach’s (2)R0 values for smallpox is centered within the 35th to 60th percentile

of our posterior distribution.

R0 Estimates and Model Fit

To show the fit of the susceptible-exposed-infected-recovered (SEIR) model to the epidemic data,

we simulated a series of epidemic curves by using the median and the 95% CI forR0 and the median

posterior estimates of the other disease parameters (Table 1), and we plotted the resulting model

predictions against four of the epidemic data sets. In interpreting the result, note that we are fitting

a common value ofR0 to multiple epidemic data sets. Although fitting population-specific values

of R0 to each epidemic would provide a better fit, doing so very likely would increase the overall

uncertainty inR0, reemphasizing our main point. Given this caveat, Fig. 8 shows that the 95% CIs

for R0 include most of the data, and the predictions based on the median value are also close to the

data. The model fits for the other epidemics, which are not shown, are similar in appearance.
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Advantages of a Bayesian Approach

The Bayesian approach that we use allows us to incorporate information from as many data sets as

possible, including both hospital data on smallpox progression and multiple historical epidemics.

Although non-Bayesian methods such as a bootstrap of parameter values (3) may be able to in-

corporate certain features of this analysis, such methods most likely would fail to account for any

potential nonnormality or multimodality of the posterior distribution.

An additional advantage of a Bayesian approach comes from its ability to take true expert opin-

ion into account when establishing prior distributions regarding potentially unknown parameters.

For example, we relied on informed expert opinion to center the distribution of mortality rates for

Old World populations (4) and, thus, to combine the mortality data coherently with the likelihood.

Given these issues, the Bayesian framework represents a particularly promising approach for com-

bining disparate information, expert opinion, and multiple data sets when estimating the parameters

of epidemic models.

The Vaccination Model

In order to translate the uncertainty in the posterior distribution of the SEIR parameters into uncer-

tainty regarding the best vaccination strategy, we used a general queuing model proposed by Kaplan

et al. (5). This model is composed of a suite of ordinary differential equations (ODEs) that group

individuals into one of five states. These states comprise untraced individuals, individuals who are

in the queue to receive a vaccination, individuals who are quarantined, individuals who are suc-

cessfully traced but unsuccessfully vaccinated, and individuals who are either recovered/immune or

dead. By following Kaplanet al.’s (5) notation, the equations take the following form:

3



Untraced Individuals –

dS0

dt
= −βI3S
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The superscript0 represents untraced individuals, as opposed to the superscript of1 that represents

traced individuals (See Eqs.14-18). S0 denotes the number of untraced susceptibles andI0
j denotes

the number of untraced infected individuals in infected disease stagej. The disease stages are then

as follows:j = 1 indicates noninfectious individuals who are showing no symptoms and who are

vaccine-sensitive;j = 2 indicates noninfectious individuals who are also showing no symptoms

but who are vaccine-insensitive;j = 3 indicates individuals who are showing no symptoms but

who are infectious; finally,j = 4 indicates individuals who are showing symptoms and who have

therefore been isolated.I3 is composed of the sum ofI0
3 + I1

3 +Q3, whereQ3 denotes the number

of individuals in the queue who are in disease stage3. In the above equations and those that follow,

c represents the number of contacts named per infected individual, andp is the fraction of infected

contacts who have been named.N denotes the overall population size, andrj represents the rate at

which individuals stay in disease stagej. Lastly,λj(t) is the expected number of untraced contacts

at timet and disease stagej, whereasR0(t) is the reproductive rate of spread of the disease at time

t.

The time at which asymptomatic individuals enter the queue, whether they are susceptible or

infected, depends upon the vaccination strategy. Under mass vaccination, all individuals enter the

queue to be vaccinated when an outbreak occurs. Under trace vaccination, only individuals who
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have been named by an infected individual enter the queue to be vaccinated. For individuals in the

queue to be vaccinated, the equations comprise:

Queued Individuals –

dQ0

dt
= [c− pR0(t)]

S0

N
r3I3 − βI3Q0 − µQ0min(1, n/Q) (9)
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HereQj represents the number of individuals that are currently in the queue, withj again repre-

senting the stage of the disease that they are in. The speed at which individuals cycle through the

queue is determined by the number of tracers/vaccinatorsn, and the rate at which individuals in the

queue are found and vaccinatedµ. Given that there is a fixed number of individuals who are able

to trace and/or vaccinate, there is a maximum number of individuals that can be removed from the

queue. This number is determined bymin(1, n/Q), whereQ =
∑3
j=1Qj .

Febrile individuals are also subject to quarantine if identified. The equation describing their

dynamics takes the form,

Quarantined Individuals –

dH

dt
= (1− f)hµQ3min(1, n/Q)− r3H − αH. (13)

Here,H represents the number of quarantined individuals who are febrile.h denotes the fraction

of individuals who are febrile and in stage 3,f is the vaccination fatality rate, andα is the rate at

which febrile individuals are vaccinated.

The equations for the number of individuals who are successfully traced but unsuccessfully

vaccinated are as follows.
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Traced but Unsuccessfully Vaccinated Individuals –

dS1

dt
= (1− f)(1− ν0)µQ0min(1, n/Q)− βS1I3 (14)

dI1
1

dt
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4
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Here,νj is the vaccine efficacy for stagej, and a superscript of1 denotes individuals who have

been traced but unsuccessfully vaccinated, as previously noted.

The final two equations track the number of recovered-and-immune individuals and the number

of dead. These equations take the following form.

Recovered-and-Immune and Dead Individuals –

dZ

dt
= (1− f)(ν0Q0 + ν1Q1)µmin(1, n/Q) + (1− δ)r4(I0

4 + I1
4 ) (19)

dD

dt
= fµQmin(1, n/Q) + δr4(I0

4 + I1
4 ) (20)

Here,Z andD represent the number of immune/recovered individuals and the number of dead,

respectively.δ is the death rate for smallpox.

In our analyses, all values derived from the multivariate draws of the posterior are placed into

the above ODEs and used to determine the number that die under trace versus mass vaccination (see

Variability in the Parameters of the Vaccination Model). All other values that are not derived from

the posterior are set to the parameter values in table 1 of Kaplanet al. (5) or to more conservative

values favoring trace vaccination as described below in the section onVariability in the Parameters

of the Vaccination Model.
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Variability in the Parameters of the Vaccination Model

All vaccination parameters were set at Kaplanet al.’s (5) baseline rates except forp, the fraction

of contacts named, which was conservatively set to 1.0. Also, we assumed that individuals in the

early stages of the disease, specifically the first 27% of the latency stage prior to the outbreak of

the fever, can be successfully vaccinated. Another difference is that Kaplanet al. (5) assume that

the prodromal or fever period is infectious; because informed opinion suggests that it is not (6, 7),

we instead assume that the prodromal period is noninfectious. Individuals in our model therefore

are neither diagnosed as having smallpox nor automatically quarantined until they start exhibiting

obvious signs of the disease. Because the early phases of smallpox can be easily confused with

the symptoms of other infectious diseases (7), and because few currently practicing physicians have

ever diagnosed smallpox, it is unclear how rapidly infected individuals could be diagnosed. We

therefore varied the percentage of the infectious period that an infected individual could circulate

between 23% and 38% of the overall infectious period. These values correspond to diagnosis at the

macales stage, at which flat, discolored patches appear on the skin, and the pustules phase, at which

blisters form (7).

Because some have argued that the vaccination rates in Kaplanet al. (5) are overly pessimistic,

it was also important to consider more optimistic scenarios. We therefore considered two more

optimistic vaccination scenarios, in addition to the scenario used in the main text, and reran the

queuing model (5) for the case in which we allow for uncertainty in all parameters. Under a mod-

erately optimistic scenario, we increased the number of traced social contacts from 50 to 300, and

we increased the number of vaccinators from 5,000 to 10,000. As Fig. 9 shows, under this scenario,

the median difference between the trace and mass vaccination strategies when usingR0 estimates

based on Old World populations is reduced to 17,000, but there is still a substantial probability that

the difference will be higher than 25,000. Similarly, for New World populations, the median differ-

ence between the two strategies is reduced to 181,000, but there is still a substantial probability that
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the difference will be higher than 1 million. Under a wildly optimistic scenario, we increased the

number of traced social contacts from 50 to 1.25 million, and the number of vaccinators from 5,000

to 125 million. As Fig. 10 shows, under this scenario, trace vaccination is more effective than mass

vaccination when we useR0 estimates based on Old World populations, because trace vaccination

is virtually identical to mass vaccination. Nevertheless, when we useR0 estimates based on New

World populations, there is still a strong possibility that trace vaccination will produce 1 million or

more additional deaths relative to mass vaccination, and uncertainty is still very high.

Absolute Number of Deaths Under Each Vaccination Strategy

For brevity, in the main text we show the effects of the two vaccination strategies in terms of the

difference in the number of deaths between the two. In fact, the absolute number of deaths under

mass vaccination is very small, especially compared to trace vaccination; moreover, most of the

uncertainty in the difference in the number dead is due to uncertainty in the number dead under

trace vaccination. To show this uncertainty, in Fig. 11, we show the distribution of the number

of dead for both mass and trace vaccination whenR0 is estimated from Old World populations,

and in Fig. 12, we show the corresponding distributions whenR0 is estimated from New World

populations. As the figures show, almost all the variability in the difference in the number of dead

between the two strategies is due to variability in the number of dead under trace vaccination.

Heterogeneity in Susceptibility: Impacts onR0 and Vaccination

As we describe in the main text, increasing model complexity by adding an additional parameter

to account for heterogeneity in susceptibility among individuals had little effect on our results. As

Table 1 shows, the 95% credible interval on̄R0, the equivalent ofR0 for the model with hetero-

geneity, has a reduced upper bound relative to the median for the model without heterogeneity, but

the medians of the two distributions are nearly the same. This assumption suggests that the only

meaningful change is a reduction in the tail of the distribution ofR̄0; indeed, Fig. 13 shows that
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the two distributions are very similar for both the previously exposed Old World and previously

unexposed New World populations. As a result, there is little or no change in the distribution of the

difference in the number of dead under the two vaccination strategies, as shown by a comparison of

Fig. 14 to Fig. 3.

This lack of difference between the outcomes of the two models is further reflected in the overall

number of deaths under mass and trace vaccination for both Old World and New World populations

(Fig. 15 and Fig. 16 as compared to Fig. 11 and Fig. 12, respectively). Increasing the model’s

complexity thus has little effect on the uncertainty in the number of dead under the two strategies.

A Simple Method of Including Variability in Susceptibility in the SEIR Model

In order to model the effects of heterogeneity in a population’s susceptibility, we used a moment-

closure approach (8–10). Under the assumption that individuals vary in their susceptibility to the

disease, the SEIR model becomes:

∂S

∂t
= −R0γ

N
SI, (21)

dE

dt
= I

γ

N

∫ ∞
0

R0S(R0, t)dR0 − αE,
dI

dt
= αE − γI,

dR

dt
= γI .

The moment-closure method reduces the partial differential equation in Eq.21 to a set of ordi-

nary differential equations. First, we define:

Sj =
∫ ∞

0
R j

0 S(R0, t)dR0 , (22)

whereSj is thejth moment ofS(R0, t). By differentiating Eq.22 with respect to time and substi-

tuting from Eq.21, we get:
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dSj
dt

= −ISj+1 . (23)

If we definemj ≡ Sj/S0 to be thejth moment of the frequency distribution of susceptibility,

and differentiatemj with respect to time, we have:

dmj

dt
= −I(mj+1 −mjm1) . (24)

Recall thatm1 is the mean of the distribution of host susceptibilities. We therefore have replaced

the partial differential equation in Eq.21 with an infinite series of ordinary differential equations,

such that each moment is a function of a higher-order moment. To approximate the higher order

moments and, thus, close the moments, we assume that the coefficient of variation remains constant.

This finding turns out to be a reasonable approximation for most initial distributions of susceptibility

(10). If k is defined as the inverse squared coefficient of variation then:

k =
m2

1

m2 −m2
1

. (25)

Thus, by substituting Eq.25 into Eq.24with respect to the first moment, we have:

dm1

dt
= −Im

2
1

k
. (26)

Also note that Eq.23can be approximated withj = 0 as:

dŜ

dt
= m1IŜ . (27)

We then divide Eq.26by Eq.27, integrate from0 to t and solve form:
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m1 =
R̄0γ

N

(
Ŝ(t)
Ŝ(0)

)1/k

. (28)

remembering that at time 0,m(0) is the mean of the disease reproductive rate,R̄0. We now sub-

stitute Eq.28 into Eq. 27 to derive an ordinary differential equation for the total population size

Ŝ;

dŜ

dt
= −R̄0γ

N

(
Ŝ(t)
Ŝ(0)

)1/k

IŜ . (29)

This gives the following set of ordinary differential equations:

dS

dt
= −R̄0γ

N
SI

(
S(t)
S(0)

)1/k

, (30)

dE

dt
=

R̄0γ

N
SI

(
S(t)
S(0)

)1/k

− αE ,

wherek is the inverse of the square root of the coefficient of variation of the distribution ofR0 across

individual hosts.k is thus an inverse measure of the variability in susceptibility among individuals in

the population. More susceptible individuals will acquire smallpox earlier in the outbreak (11). As

the epidemic progresses, susceptibility of the noninfected decreases asR0 is scaled by smaller and

smaller values ofS(t)/S(0). The larger the value ofk, the closer the model is to the homogeneous

model (Eq.1) and models with values ofk > 200 are nearly indistinguishable from models that

assume all individuals are identical.

Note that, in numerically solving these and all other differential equations, we used an automatic

second- and third-order pair step-size Runge-Kutta-Fehlberg integration method or a simple fourth-

and fifth-order Runge-Kutta algorithm (Matlab; Mathworks, Natick, NA). In general, the SEIR

equations (Eq.1) are well known for their numeric stability (i.e., the state variables change very

smoothly over time) (11), and the use of both integration methods noted above perform well with

such equations (12).
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